أخبار

حلول علمية لتحسين سلامة وكفاءة بطاريات الليثيوم المعدنية

تُعَد بطاريات الليثيوم المعدنية من بين أبرز الأنواع المرشحة الواعدة للجيل القادم من البطاريات عالية الطاقة، فهي قادرة على تخزين ما لا يقل عن ضعف الطاقة مقارنة ببطاريات الليثيوم أيون التقليدية التي تُستخدم على نطاق واسع حالياً.

وهذا يعني، على سبيل المثال، أن السيارة الكهربائية يمكنها السفر لضعف المسافة التي تقطعها بشحنة واحدة، أو أن الهاتف الذكي لن يحتاج إلى إعادة شحنه كثيراً. لكن تلك البطاريات لا تزال تواجه تحديات تعيق تسويقها الواسع والتجاري، ومنها سلامة الاستخدام، وثبات الدورة وعمر البطارية، وتكاليف الإنتاج، وتقنيات التصنيع، والسلامة البيئية.

ورغم التحديات، هناك كثير من الأبحاث تجري حالياً لتجاوز هذه العقبات وتحقيق تقدم في تطوير بطاريات الليثيوم المعدنية.

السلامة البيئية

وتواجه بطاريات الليثيوم المعدنية تحديات بيئية بسبب استخدام كميات كبيرة من المذيبات والأملاح المحتوية على الفلورين، ما يزيد من بصمتها البيئية بسبب سمية الفلورين وصعوبة تحلله. ومن دون الفلورين، الذي يحافظ على أداء البطارية واستقرارها، قد تتوقف عن العمل بعد عدد قليل من دورات الشحن، وتكون عرضة للتسخين الشديد والاشتعال.

وتوصل باحثون في سويسرا لطريقة جديدة لتقليل استخدام الفلورين في بطاريات الليثيوم المعدنية مع الحفاظ على كفاءتها واستقرارها، ونُشرت النتائج بعدد 5 يوليو (تموز) 2024، من دورية «Energy & Environmental Science».

وأوضح الباحثون في المعهد الفيدرالي السويسري للتكنولوجيا في زيوريخ أن الطريقة الجديدة تجعل بطاريات الليثيوم المعدنية أكثر استدامة وكفاءة من حيث التكلفة وأقل تأثيراً على البيئة.

وتعتمد الطريقة على استخدام مركبات الفلورين لتشكيل طبقة حماية حول الليثيوم المعدني عند القطب السالب، ما يحميه من التفاعل المستمر مع مكونات الإلكتروليت، ويقلل من درجة الحرارة، وبالتالي يعزز سلامة البطارية وكفاءتها.

 

بطاريات الليثيوم المعدنية لاتزال تواجه تحديات بيئية (رويترز)

 

واستخدام الفريق جزيئات مشحونة كهربائياً لنقل الفلورين إلى طبقة الحماية، ما أدى لتقليل كمية الفلورين المطلوبة إلى 0.1 في المائة فقط من الوزن، وهو أقل بـ20 مرة من الدراسات السابقة. تقول الباحثة الرئيسية للدراسة المعهد الفيدرالي السويسري للتكنولوجيا الدكتورة ماريا لوكاتسكايا، إن هذه الخطوة تعد بزيادة أمان وكفاءة البطاريات وجعلها خياراً أكثر صداقة للبيئة.

وتضيف لوكاتسكايا لـ«الشرق الأوسط»: تقليل الاعتماد على الفلور «يؤدي لخفض تكاليف الإنتاج، ما يجعل هذه البطاريات أكثر جدوى من الناحية الاقتصادية، كما يمكن دمج هذه الطريقة بسلاسة في عمليات إنتاج البطاريات الحالية، ما يسهل على الشركات المصنعة زيادة الإنتاج وطرح البطاريات الجديدة في السوق بسرعة أكبر».

أداء أعلى

تستخدم بطاريات الليثيوم المعدنية قطباً من الليثيوم المعدني بدلاً من الغرافيت في البطاريات التقليدية، ما يؤدي لتكوين طبقة عازلة صلبة (SEI) تؤثر على أداء البطارية.

واستخدم باحثون في جامعة كولومبيا تقنية الرنين المغناطيسي النووي لدراسة التفاعلات على سطح القطب، ما يساعد في تحسين أداء وسلامة البطاريات.

وكشفت الدراسة المنشورة مايو (أيار) الماضي، بدورية «Joule»، أن التقنية تحلل حركة أيونات الليثيوم والتأثير الكيميائي على طبقة العزل، ما يساهم في تطوير بطاريات أكثر فعالية وأماناً.

الاستقرار والسلامة

من جهة أخرى، ومن نواحي الاستقرار والسلامة، نجح علماء جامعة ستانفورد في حل مشكلة رئيسية في بطاريات الليثيوم المعدنية تتعلق بتكوين دوائر كهربائية مغلقة تستنزف الطاقة وتدمر البطارية. ووجدت الدراسة، المنشورة في نوفمبر (تشرين الثاني) الماضي بدورية «Nature Energy» أن هذه الدوائر تنشأ عن تصدعات في إلكتروليتات السيراميك الصلبة بسبب الضغوط الميكانيكية أثناء الشحن أو التصنيع. وتوفر هذه النتائج حلولاً لتحسين استقرار وسلامة بطاريات الليثيوم المعدنية.

حماية من الحريق

كما طور باحثون بجامعة كاليفورنيا تقنية لحماية بطاريات الليثيوم المعدنية من الاشتعال عبر تعديل جُزء يعرف بـ«الفاصل» لإبطاء تدفق الطاقة والحرارة في حالة حدوث ماس كهربائي، مما يمنع انفجار البطارية ويقلل مخاطر الحريق، وفق دراسة منشورة بدورية «Science Advances» نوفمبر 2020.

وتستخدم التقنية طبقة رقيقة من الأنابيب الكربونية لسد الشروخ في الفاصل ومنع تدفق الإلكترونات بشكل غير منضبط، مما يحسن سلامة بطاريات الليثيوم المعدنية.

 

إغلاق